If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+20x+20=0
a = 3; b = 20; c = +20;
Δ = b2-4ac
Δ = 202-4·3·20
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{10}}{2*3}=\frac{-20-4\sqrt{10}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{10}}{2*3}=\frac{-20+4\sqrt{10}}{6} $
| (0.01)^x-2=(1/10)^x1 | | 0.75t^2-27=0 | | 20x^2+20x-500=0 | | 2^3+2x+2^2x=2^x | | (40x^2+40x-1000)/2=0 | | t^2-7t+20=0 | | 40x^2+40x-1000=0 | | 16=3(x+2) | | 5(p+2)=3(p-1) | | a^2=4*a | | a=4*2a | | 3x-3(4+x)=3/4(3x+2)-1 | | 3÷y=16÷3-5÷y | | 3x-5=2(-x-5) | | 3x=24/9=2 | | 5^n=78125 | | 5x+30=48 | | 2.h-40=50 | | 5.d-10=40 | | (4/3)^x=64/27 | | x(.08)+x=4900 | | x(.08)=4900 | | √(x+2)+√(11-x)=5 | | √x+2+√11-x=5 | | 5*9=15*x | | 20÷3p=40 | | 1.9+0.06=x | | 2(x+3/2)=9 | | X3=9x-9 | | 1.6=y/1.5-2 | | 3x-2x=-7-2 | | 4x-(60-x)×1=130 |